Materials Research (Apr 2019)

Contrastive Research on Electrical Contact Performance for Contact Materials of Cu-SnO2 and Cu-ZnO2 Alloys

  • Guanyu Cao,
  • Yun Zhang,
  • Jingshun Liu,
  • Ding Nan,
  • Huimin Liu

DOI
https://doi.org/10.1590/1980-5373-mr-2018-0901
Journal volume & issue
Vol. 22, no. 3

Abstract

Read online Read online

Herein, SnO2- and ZnO2-doped (1.5 wt.%) composite Cu powder was prepared by mechanical alloying (MA) respectively, and both the contact materials of oxide-doped Cu alloys were subsequently obtained by canned hot-pressing powder sintering with hot extrusion combined. Scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM) and self-designed electrical breakdown device were used for investigating the microstructure and properties including electric conductivity and hardness, especially for electrical contact performance of the Cu-SnO2 alloy and in compared with the Cu-ZnO2 alloy. The experimental results show that the hardness of Cu-SnO2 and Cu-ZnO2 contact materials are 103.5±1 HV and 192.7±1 HV, respectively, which meet the hardness standard of national standard electrical contact materials. Meanwhile, the relative conductivity %IACS are 7.24% and 6.20%, respectively, which are higher than the traditional Cu-based contact materials. This electrical life simulation test system was designed independently, and the results indicate that the switching times of Cu-SnO2 contact materials are much more than that of Cu-ZnO2. The addition of SnO2 can effectively improve the arc extinguishing characteristics and the anti-welding performance of the contact materials is enhanced. In summary, SnO2-doped Cu-based contact materials possess excellent comprehensive properties, which can provide reference for potential applications in contact materials.

Keywords