PLoS ONE (Jan 2018)
Comparison of the validity of smear and culture conversion as a prognostic marker of treatment outcome in patients with multidrug-resistant tuberculosis.
Abstract
BACKGROUND:The World Health Organization (WHO) has conditionally recommended the use of sputum smear microscopy and culture examination for the monitoring of multidrug-resistant tuberculosis (MDR-TB) treatment. We aimed to assess and compare the validity of smear and culture conversion at different time points during treatment for MDR-TB, as a prognostic marker for end-of-treatment outcomes. METHODS:We undertook a retrospective observational cohort study using data obtained from Hunan Chest Hospital, China and Gondar University Hospital, Ethiopia. The sensitivity and specificity of culture and sputum smear conversion for predicting treatment outcomes were analysed using a random-effects generalized linear mixed model. RESULTS:A total of 429 bacteriologically confirmed MDR-TB patients with a culture and smear positive result were included. Overall, 345 (80%) patients had a successful treatment outcome, and 84 (20%) patients had poor treatment outcomes. The sensitivity of smear and culture conversion to predict a successful treatment outcome were: 77.9% and 68.9% at 2 months after starting treatment (difference between tests, p = 0.007); 95.9% and 92.7% at 4 months (p = 0.06); 97.4% and 96.2% at 6 months (p = 0.386); and 99.4% and 98.9% at 12 months (p = 0.412), respectively. The specificity of smear and culture non-conversion to predict a poor treatment outcome were: 41.6% and 60.7% at 2 months (p = 0.012); 23.8% and 48.8% at 4 months (p<0.001); and 20.2% and 42.8% at 6 months (p<0.001); and 15.4% and 32.1% (p<0.001) at 12 months, respectively. The sensitivity of culture and smear conversion increased as the month of conversion increased but at the cost of decreased specificity. The optimum time points after conversion to provide the best prognostic marker of a successful treatment outcome were between two and four months after treatment commencement for smear, and between four and six months for culture. The common optimum time point for smear and culture conversion was four months. At this time point, culture conversion (AUROC curve = 0.71) was significantly better than smear conversion (AUROC curve = 0.6) in predicting successful treatment outcomes (p < 0.001). However, the validity of smear conversion (AUROC curve = 0.7) was equivalent to culture conversion (AUROC curve = 0.71) in predicting treatment outcomes when demographic and clinical factors were included in the model. The positive and negative predictive values for smear conversion were: 57.3% and 65.7% at two months, 55.7% and 85.4% at four months, and 55.0% and 88.6% at six months; and for culture conversions it was: 63.7% and 66.2% at two months, 64.4% and 87.1% at four months, and 62.7% and 91.9% at six months, respectively. CONCLUSIONS:The validity of smear conversion is significantly lower than culture conversion in predicting MDR-TB treatment outcomes. We support the WHO recommendation of using both smear and culture examination rather than smear alone for the monitoring of MDR-TB patients for a better prediction of successful treatment outcomes. The optimum time points to predict a future successful treatment outcome were between two and four months after treatment commencement for sputum smear conversion and between four and six months for culture conversion. The common optimum times for culture and smear conversion together was four months.