AIMS Mathematics (Feb 2020)

Computing the conjugacy classes and character table of a non-split extension 2<sup>6</sup>·(2<sup>5</sup>:<em>S</em><sub>6</sub>) from a split extension 2<sup>6</sup>:(2<sup>5</sup>:<em>S</em><sub>6</sub>)

  • Abraham Love Prins

DOI
https://doi.org/10.3934/math.2020140
Journal volume & issue
Vol. 5, no. 3
pp. 2113 – 2125

Abstract

Read online

In this paper, we will demonstrate how the character table of a sub-maximal subgroup $2^6{:}(2^5{:}S_6)$ of the sporadic simple group $Fi_{22}$ can be used to obtain the conjugacy classes and character table of a non-split extension of the form $2^6{{}^{\cdot}}(2^5{:}S_6)$, which sits maximal in the unique non-split extension $2^6{{}^{\cdot}}Sp_6(2)$.

Keywords