Heliyon (Feb 2024)

Stable and effective eco-enzyme cocktails in powder and liquid form of Stachybotrys microspora used as detergent additives

  • Ines Ben Hmad,
  • Ali Gargouri

Journal volume & issue
Vol. 10, no. 3
p. e25610

Abstract

Read online

Objective: The present work aims to optimize fermentation parameters for the simultaneous production of eco-enzymes: proteases, amylases, and endoglucanases from the same fungus Stachybotrys microspora, and to evaluate their stability in free form and formulated in lye as detergent additives. Methods: Initially, enzyme cocktail production was assayed in a medium comprising inexpensive waste biomass. Using the best substrate, we investigated the effect of its different concentrations and the NaCl concentration on the three enzymes co-production. Next, we studied the effect of several additives on the storage stability of the lyophilized enzyme cocktail (powder in liquid forms) free and incorporated in commercial laundry detergent. Finally, the washing efficiency analysis of the newly formulated enzyme cocktail was evaluated on dirty tissue pieces with different stains. Results: The highest enzymatic cocktail production was achieved at 30 °C for 96 h after adding 0.1% NaCl and 1.5% wheat bran as waste biomass in the basal culture medium. The effect of adding maltodextrin, sucrose, or polyethylene glycol 4000 during freeze-drying showed that maltodextrin is the best additive to protect the activities of proteases, amylases, and cellulases of liquid and powder enzyme form. Additionally, the liquid formulation of these enzymes showed excellent stability and compatibility with 1% maltodextrin and 10% glycerol. Interestingly, we have developed a new formulation of an enzyme cocktail (liquid and powder) stable and highly compatible with detergents. Comparing the washing performance of different formulations containing our enzyme cocktail to commercial ones showed significantly better removal of different types of stains. Conclusions: This research shows a cost-effective approach to simultaneously produce proteases, amylases, and endoglucanases from Stachybotrys microspora that could be considered a compatible detergent additive in the green detergent industry.

Keywords