Biomedicine & Pharmacotherapy (Jan 2023)
Research progress on pyroptosis-mediated immune-inflammatory response in ischemic stroke and the role of natural plant components as regulator of pyroptosis: A review
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability. Its pathogenesis is not completely clear, and inflammatory cascade is one of its main pathological processes. The current clinical practice of IS is to restore the blood supply to the ischemic area after IS as soon as possible through thrombolytic therapy to protect the vitality and function of neurons. However, blood reperfusion further accelerates ischemic damage and cause ischemia-reperfusion injury. The pathological process of cerebral ischemia-reperfusion injury involves multiple mechanisms, and the exact mechanism has not been fully elucidated. Pyroptosis, a newly discovered form of inflammatory programmed cell death, plays an important role in the initiation and progression of inflammation. It is a pro-inflammatory programmed death mediated by caspase Caspase-1/4/5/11, which can lead to cell swelling and rupture, release inflammatory factors IL-1β and IL-18, and induce an inflammatory cascade. Recent studies have shown that pyroptosis and its mediated inflammatory response are important factors in aggravating ischemic brain injury, and inhibition of pyroptosis may alleviate the ischemic brain injury. Furthermore, studies have found that natural plant components may have a regulatory effect on pyroptosis. Therefore, this review not only summarizes the molecular mechanism of pyroptosis and its role in ischemic stroke, but also the role of natural plant components as regulator of pyroptosis, in order to provide reference information on pyroptosis for the treatment of IS in the future.