Asian-Australasian Journal of Animal Sciences (Mar 2018)

Acidification of pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and perennial ryegrass regrowth as estimated by N-urea flux

  • Sang Hyun Park,
  • Bok Rye Lee,
  • Kwang Hwa Jung,
  • Tae Hwan Kim

DOI
https://doi.org/10.5713/ajas.17.0556
Journal volume & issue
Vol. 31, no. 3
pp. 457 – 466

Abstract

Read online

Objective The present study aimed to assess the nitrogen (N) use efficiency of acidified pig slurry for regrowth yield and its environmental impacts on perennial ryegrass swards. Methods The pH of digested pig slurry was adjusted to 5.0 or 7.0 by the addition of sulfuric acid and untreated as a control. The pig slurry urea of each treatment was labeled with 15N urea and applied at a rate of 200 kg N/ha immediately after cutting. Soil and herbage samples were collected at 7, 14, and 56 d of regrowth. The flux of pig slurry-N to regrowth yield and soil N mineralization were analyzed, and N losses via NH3, N2O emission and NO3− leaching were also estimated. Results The pH level of the applied slurry did not have a significant effect on herbage yield or N content of herbage at the end of regrowth, whereas the amount of N derived from pig slurry urea (NdfSU) was higher in both herbage and soils in pH-controlled plots. The NH4+-N content and the amount of N derived from slurry urea into soil NH4+ fraction (NdfSU-NH4+) was significantly higher in in the pH 5 plot, whereas NO3− and NdfSU-NO3− were lower than in control plots over the entire regrowth period. Nitrification of NH4+-N was delayed in soil amended with acidified slurry. Compared to non-pH-controlled pig slurry (i.e. control plots), application of acidified slurry reduced NH3 emissions by 78.1%, N2O emissions by 78.9% and NO3− leaching by 17.81% over the course of the experiment. Conclusion Our results suggest that pig slurry acidification may represent an effective means of minimizing hazardous environmental impacts without depressing regrowth yield.

Keywords