Genome Biology (May 2020)
APEC: an accesson-based method for single-cell chromatin accessibility analysis
Abstract
Abstract The development of sequencing technologies has promoted the survey of genome-wide chromatin accessibility at single-cell resolution. However, comprehensive analysis of single-cell epigenomic profiles remains a challenge. Here, we introduce an accessibility pattern-based epigenomic clustering (APEC) method, which classifies each cell by groups of accessible regions with synergistic signal patterns termed “accessons”. This python-based package greatly improves the accuracy of unsupervised single-cell clustering for many public datasets. It also predicts gene expression, identifies enriched motifs, discovers super-enhancers, and projects pseudotime trajectories. APEC is available at https://github.com/QuKunLab/APEC .
Keywords