Scientific Reports (Jun 2023)
Chain-specificity of laminin α1-5 LG45 modules in the recognition of carbohydrate-linked receptors and intramolecular binding
Abstract
Abstract Laminins are a family of heterotrimers composed of α-, β-, and γ-chains in the basement membrane. Five α chains contain laminin globular (LG) domain consisting of five tandem modules (LG1-5 modules) at their C-terminus. Each LG45 modules is connected to a compact cloverleaf-shaped structure of LG1-3 through a flexible linker. Although the accumulated studies of the LG45 modules have suggested differences in each α chain regarding the binding of carbohydrate chain and intramolecular interaction, this remains unclear. In this study, to characterize their functions comparatively, we produced recombinant proteins of LG45 modules of human laminin α1-5 chains. Dystroglycan (DG) modified with matriglycan readily bound to the LG45 modules of α1 and α2 chains but not to the other α chains. In contrast, heparin bound to the LG45 modules of the α chains, except for α2. The binding of heparan sulfate/heparin-linked syndecans (SDCs) to LG45 modules was influenced by their core proteins. Furthermore, the α1 and α4LG45 modules bound to SDCs in a pH-dependent manner. A cell adhesion assay showed that HEK293 cells could readily adhere to the LG45 modules of α3-5 chains through a combination of SDCs and integrins. Moreover, α5LG45 modules bound to the E8 fragment, which includes the C-terminus of the laminin coiled-coil (LCC) domain and LG1-3 modules, but α2LG45 modules did not. The results suggested that although α5LG45 modules was fixed within the LG domain, α2LG45 modules was freely placed in the vicinity of LG1–3. Our findings provide information for investigation of the structural and functional diversity of basement membranes.