Metals (Dec 2023)

Effect of Hf Dopant on Resistance to CO Toxicity on ZrCo(110) Surface for H Adsorption

  • Xianggang Kong,
  • Rongjian Pan,
  • Dmitrii O. Kharchenko,
  • Lu Wu

DOI
https://doi.org/10.3390/met13121973
Journal volume & issue
Vol. 13, no. 12
p. 1973

Abstract

Read online

Co-adsorption of multi-components in ZrCo-based hydrogen storage materials can lead to a number of synergistic effects, such as the modification of adsorption sites, and further worsen the hydrogen storage capability. In this work, we explore the co-adsorption of H and CO on the ZrCo(110) surface and find that the molecular CO can be adsorbed on the clean alloy surface and thus decrease the hydrogen storage ability of the alloy. Moreover, CO occupies the adsorption site of H and therefore prevents the adsorption and diffusion into the interior of the lattice. Fortunately, the Hf dopant reduces the number of adsorption sites of the CO molecule and inhibits the formation of carbides to a certain extent. In addition, the partial density of states (PDOS) result shows that there is almost no interaction between the s orbital of H and the s orbital of Co on the pure surface of pre-adsorbed CO, while on the Hf-doped surface of pre-adsorbed CO, the s orbital of H overlapped greatly with the s orbital of Co, indicating that Hf doping inhibits CO toxicity in the interaction between H and the surface. Hence, the doping of Hf has the effect of giving resistance to CO toxicity and is conducive to the adsorption of H.

Keywords