Molecules (Nov 2021)

Design, Synthesis, and Evaluation of Near-Infrared Fluorescent Molecules Based on 4H-1-Benzopyran Core

  • Shuting Wang,
  • Shulei Zhu,
  • Yawen Tanzeng,
  • Yuexing Zhang,
  • Chuchu Li,
  • Mingliang Ma,
  • Wei Lu

DOI
https://doi.org/10.3390/molecules26226986
Journal volume & issue
Vol. 26, no. 22
p. 6986

Abstract

Read online

A series of novel fluorescent 4H-1-benzopyrans was designed and developed as near-infrared fluorescent molecules with a compact donor–acceptor-donor architecture. Spectral intensity of the fluorescent molecules M-1, M-2, M-3 varied significantly with the increasing polarities of solvents, where M-3 showed high viscosity sensitivity in glycerol-ethanol system with a 3-fold increase in emission intensity. Increasing concentrations of compound M-3 to 5% BSA in PBS elicited a 4-fold increase in fluorescence intensity, exhibiting a superior environmental sensitivity. Furthermore, the in vitro cellular uptake behavior and CLSM assay of cancer cell lines demonstrated that M-3 could easily enter the cell nucleus and bind to proteins with low toxicity. Therefore, the synthesized near-infrared fluorescent molecules could provide a new direction for the development of optical imaging probes and potential further drugs.

Keywords