Journal of Lipid Research (Jul 1980)
Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth.
Abstract
The availability of compactin (ML-236B), a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl Coenzyme A reductase, has permitted the demonstration of a hitherto unsuspected aspect of mevalonate metabolism and isoprenoid synthesis in cultured mammalian cells. 3-Hydroxy-3-methylglutaryl Coenzyme A reductase, the enzyme that synthesizes mevalonate, appears to be regulated through a multivalent feedback mechanism. Full suppression of the reductase requires the presence of at least two regulators: 1) cholesterol, which is normally derived exogenously from plasma low density lipoprotein (LDL), and 2) a nonsterol product, which is normally synthesized endogenously from mevalonate. Evidence indicates that both of these regulators of the reductase may be essential for the growth of mammalian cells in culture. The multivalent feedback regulation of 3-hydroxy-3-methylglutaryl Coenzyme A reductase, together with secondary regulatory changes in other enzymes of the sterol synthetic pathway, coordinates the branched pathway of mevalonate metabolism so as to assure a constant supply of cholesterol and nonsterol products. These new findings have important implications for the understanding of isoprenoid metabolism and its relation to cell growth.