Atmosphere (Jan 2022)
Interfacial Dark Aging Is an Overlooked Source of Aqueous Secondary Organic Aerosol
Abstract
In this work, the relative yields of aqueous secondary organic aerosols (aqSOAs) at the air–liquid (a–l) interface are investigated between photochemical and dark aging using in situ time-of-flight secondary ion mass spectrometry (ToF-SIMS). Our results show that dark aging is an important source of aqSOAs despite a lack of photochemical drivers. Photochemical reactions of glyoxal and hydroxyl radicals (•OH) produce oligomers and cluster ions at the aqueous surface. Interestingly, different oligomers and cluster ions form intensely in the dark at the a–l interface, contrary to the notion that oligomer formation mainly depends on light irradiation. Furthermore, cluster ions form readily during dark aging and have a higher water molecule adsorption ability. This finding is supported by the observation of more frequent organic water cluster ion formation. The relative yields of water clusters in the form of protonated and hydroxide ions are presented using van Krevelen diagrams to explore the underlying formation mechanisms of aqSOAs. Large protonated and hydroxide water clusters (e.g., (H2O)nH+, 17 2O)nH+, 1 ≤ n ≤ 17) form after several hours of dark aging. Moreover, cluster ions have higher yields in dark aging, indicating the overlooked influence of dark aging interfacial products on aerosol optical properties. Molecular dynamic simulation shows that cluster ions form stably in UV and dark aging. AqSOAs molecules produced from dark and photochemical aging can enhance UV absorption of the aqueous surface, promote cloud condensation nuclei (CCN) activities, and affect radiative forcing.
Keywords