Complexity (Jan 2021)
Articulatory-to-Acoustic Conversion of Mandarin Emotional Speech Based on PSO-LSSVM
Abstract
The production of emotional speech is determined by the movement of the speaker’s tongue, lips, and jaw. In order to combine articulatory data and acoustic data of speakers, articulatory-to-acoustic conversion of emotional speech has been studied. In this paper, parameters of LSSVM model have been optimized using the PSO method, and the optimized PSO-LSSVM model was applied to the articulatory-to-acoustic conversion. The root mean square error (RMSE) and mean Mel-cepstral distortion (MMCD) have been used to evaluate the results of conversion; the evaluated result illustrates that MMCD of MFCC is 1.508 dB, and RMSE of the second formant (F2) is 25.10 Hz. The results of this research can be further applied to the feature fusion of emotion speech recognition to improve the accuracy of emotion recognition.