Jurnal Teknologi Informasi dan Ilmu Komputer (Aug 2024)

Perbandingan Instance Segmentation Image Pada Yolo8

  • Resty Wulanningrum,
  • Anik Nur Handayani,
  • Aji Prasetya Wibawa

DOI
https://doi.org/10.25126/jtiik.1148288
Journal volume & issue
Vol. 11, no. 4

Abstract

Read online

Seorang pejalan kaki sangat rawan terhadap kecelakaan di jalan. Deteksi pejalan kaki merupakan salah satu cara untuk mengidentifikasi atau megklasifikasikan antara orang, jalan atau yang lainnya. Instance segmentation adalah salah satu proses untuk melakukan segmentasi antara orang dan jalan. Instance segmentation dan penggunaan yolov8 merupakan salah satu implementasi dalam deteksi pejalan kaki. Perbandingan segmentasi pada dataset Penn-Fundan Database menggunakan yolov8 dengan model yolov8n-seg, yolov8s-seg, yolov8m-seg, yolov8l-seg, yolov8x-seg. Penelitian ini menggunakan dataset publik pedestrian atau pejalan kaki dengan objek multi person yang diambil dari dataset Penn-Fudan Database. Dataset mempunyai 2 kelas, yaitu orang dan jalan. Hasil perbandingan penggunaan model yolov8 model segmentasi yang terbaik adalah menggunakan model yolov8l-seg. Hasil penelitian didapatkan Instance segmentation valid box pada data orang, mAP50 tertinggi pada yolov8l-seg dengan nilai 0,828 dan mAP50-95 adalah 0,723. Instance segmentation valid mask pada orang nilai mAP50 tertinggi pada yolov8l-seg dengan nilai 0,825 dan mAP50-95 adalah 0,645. Pada penelitian ini, yolov8l-seg menjadi nilai terbaik dibandingkan versi yang lain, karena berdasarkan nilai mAP tertinggi pada valid mask sebesar 0,825. Abstract A pedestrian is very vulnerable to road accidents. Pedestrian detection is one way to identify or classify between people, roads or others. Instance segmentation is one of the processes to segment people and roads. Instance segmentation and the use of yolov8 is one of the implementations in pedestrian detection. Comparison of segmentation on Penn-Fundan Database dataset using yolov8 with yolov8n-seg, yolov8s-seg, yolov8m-seg, yolov8l-seg, yolov8x-seg models. This research uses a public pedestrian dataset with multi-person objects taken from the Penn-Fudan Database dataset. The dataset has 2 classes, namely people and roads. The results of the comparison using the yolov8 model, the best segmentation model is using the yolov8l-seg model. The results obtained Instance segmentation valid box on people data, the highest mAP50 on yolov8l-seg with a value of 0.828 and mAP50-95 is 0.723. Instance segmentation valid mask on people the highest mAP50 value on yolov8l-seg with a value of 0.825 and mAP50-95 is 0.645. In his study, yolov8l-seg is the best value compared to other versions, because based on the highest mAP value on the valid mask of 0.825.