PLoS ONE (Jan 2022)
AQM based on the queue length: A real-network study
Abstract
Active Queue Management (AQM) is recommended by Internet Engineering Task Force to mitigate the bufferbloat phenomenon in the Internet. In this paper, we show the results of comprehensive measurements carried out in our university network, in which a device with an AQM algorithm, designed and programmed for this purpose, was running. The implemented AQM algorithm was based on the dropping function, i.e. arriving packets were dropped randomly, with the probability being a function of the queue length. Several different dropping function forms, proposed in the networking literature, were used, in addition to the classic FIFO queue (no AQM). The experiment lasted over a month, during which the state of the network was measured and recorded several thousand times. This made the results independent of the natural fluctuations of the users’ behavior and the network load. Conclusions on the general performance improvement offered by the implemented AQM, as well as the differences in the performance between particular forms of the dropping function, were reached. Some of these conclusions differ from those drawn previously from simulations. This underlines the need for carrying measurements of new AQMs in real, operating networks, with complex, natural traffic.