Heliyon (Sep 2024)

Unraveling the relevance of SARS-Cov-2 infection and ferroptosis within the heart of COVID-19 patients

  • Amin Alizadeh Saghati,
  • Zahra Sharifi,
  • Mehdi Hatamikhah,
  • Marieh Salimi,
  • Mahmood Talkhabi

Journal volume & issue
Vol. 10, no. 17
p. e36567

Abstract

Read online

Background: The coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to a huge mortality rate and imposed significant costs on the health system, causing severe damage to the cells of different organs such as the heart. However, the exact details and mechanisms behind this damage are not clarified. Therefore, we aimed to identify the cell and molecular mechanism behind the heart damage caused by SARS-Cov-2 infection. Methods: RNA-seq data for COVID-19 patients’ hearts was analyzed to obtain differentially expressed genes (DEGs) and differentially expressed ferroptosis-related genes (DEFRGs). Then, DEFRGs were used for analyzing GO and KEGG enrichment, and perdition of metabolites and drugs. we also constructed a PPI network and identified hub genes and functional modules for the DEFRGs. Subsequently, the hub genes were validated using two independent RNA-seq datasets. Finally, the miRNA-gene interaction networks were predicted in addition to a miRNA-TF co-regulatory network, and important miRNAs and transcription factors (TFs) were highlighted. Findings: We found ferroptosis transcriptomic alterations within the hearts of COVID-19 patients. The enrichment analyses suggested the involvement of DEFRGs in the citrate cycle pathway, ferroptosis, carbon metabolism, amino acid biosynthesis, and response to oxidative stress. IL6, CDH1, AR, EGR1, SIRT3, GPT2, VDR, PCK2, VDR, and MUC1 were identified as the ferroptosis-related hub genes. The important miRNAs and TFs were miR-124-3P, miR-26b-5p, miR-183-5p, miR-34a-5p and miR-155-5p; EGR1, AR, IL6, HNF4A, SRC, EZH2, PPARA, and VDR. Conclusion: These results provide a useful context and a cellular snapshot of how ferroptosis affects cardiomyocytes (CMs) in COVID-19 patients’ hearts. Besides, suppressing ferroptosis seems to be a beneficial therapeutic approach to mitigate heart damage in COVID-19.

Keywords