Shanghai Jiaotong Daxue xuebao. Yixue ban (Apr 2024)
Research progress in the role of M1/M2 polarization of macrophages in different liver diseases
Abstract
Macrophages have strong plasticity and heterogeneity, and can undergo functional transformation in response to different signal stimuli, such as classical activation of M1 type (M1 type polarization) and selective activation of M2 type (M2 type polarization). The pathways of macrophage M1/M2 polarization are quite extensive, involving nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway, interleukin-4 (IL-4)/signal transduction and activator of transcription 6 (STAT6) signaling pathway, Notch signaling pathway, Wnt/β-catenin signaling pathway, etc. At the same time, M1/M2 polarization of macrophages is also regulated by exosomes, metabolites, non-coding RNA, electrical stimulation, probiotics, etc., and its imbalance is closely related to the occurrence and development of different types of liver disease. In this paper, the mechanism of its polarization was reviewed, and it was found that M1 polarization of macrophages played a promoting role in the process of liver tissue injury, inflammation and fibrosis, while M2 polarization of macrophages played the opposite role. Among them, hepatocellular carcinoma, as the advanced stage of chronic liver disease, was characterized by increased M2 polarization and impaired M1 polarization of macrophages. Therefore, this paper pays attention to the role of M1/M2 polarization of macrophages in different types of liver diseases, in order to better establish the targeted therapy of macrophage subsets.
Keywords