The Scientific World Journal (Jan 2020)

Adsorption of Cr(VI) in Aqueous Solution Using a Surfactant-Modified Bentonite

  • Johnatan D. Castro-Castro,
  • Iván F. Macías-Quiroga,
  • Gloria I. Giraldo-Gómez,
  • Nancy R. Sanabria-González

DOI
https://doi.org/10.1155/2020/3628163
Journal volume & issue
Vol. 2020

Abstract

Read online

Clay minerals can be modified organically by a cationic surfactant resulting in materials known as organoclays. The organoclays have been used as adsorbents of most of the organic contaminants in the aqueous solution and oxyanions of the heavy metal. In this study, a Colombian bentonite was modified with hexadecyltrimethylammonium bromide to obtain an organobentonite, and its capacity to adsorb Cr(VI) oxyanions in the aqueous solution was evaluated. The effect of pH, stirring speed, adsorbent amount, contact time, and ionic strength were investigated at 25°C. Stirring speeds above 200 rpm, contact times greater than 120 min, and the addition of NaCl (0.1 to 2.0 mM) did not have a significant effect on Cr(VI) removal. The influence of the adsorbent amount and pH on Cr(VI) adsorption was studied by the response surface methodology (RSM) approach based on a complete factorial design 32. Results proved that the Cr(VI) adsorption follows a quadratic model with high values of coefficient of determination (R2 = 95.1% and adjusted R2 = 93.9%). The optimal conditions for removal of Cr(VI) from an aqueous solution of 50 mg/L were pH of 3.4 and 0.44 g amount of the adsorbent. The adsorption isotherm data were fitted to the Langmuir and Freundlich adsorption isotherm models, and the model parameters were evaluated. The maximum adsorption capacity of Cr(VI) onto organobentonite calculated from the Langmuir model equation was 10.04 ± 0.34 mg/g at 25°C. The results suggest that organobentonite is an effective adsorbent for Cr(VI) removal, with the advantage of being a low-cost material.