International Journal of Molecular Sciences (Aug 2023)

Discovery of α-Linolenic Acid 16(<i>S</i>)-Lipoxygenase: Cucumber (<i>Cucumis sativus</i> L.) Vegetative Lipoxygenase 3

  • Svetlana S. Gorina,
  • Alevtina M. Egorova,
  • Natalia V. Lantsova,
  • Yana Y. Toporkova,
  • Alexander N. Grechkin

DOI
https://doi.org/10.3390/ijms241612977
Journal volume & issue
Vol. 24, no. 16
p. 12977

Abstract

Read online

The GC-MS profiling of the endogenous oxylipins (Me/TMS) from cucumber (Cucumis sativus L.) leaves, flowers, and fruit peels revealed a remarkable abundance of 16-hydroxy-9,12,14-octadecatrienoic acid (16-HOT). Incubations of homogenates from these organs with α-linolenic acid yielded 16(S)-hydroperoxide (16-HPOT) as a predominant product. Targeted proteomic analyses of these tissues revealed the presence of several highly homologous isoforms of the putative “9S-lipoxygenase type 6”. One of these isoenzymes (CsLOX3, an 877 amino acid polypeptide) was prepared by heterologous expression in E. coli and exhibited 16(S)- and 13(S)-lipoxygenase activity toward α-linolenic and linoleic acids, respectively. Furthermore, α-linolenate was a preferred substrate. The molecular structures of 16(S)-HOT and 16(S)-HPOT (Me or Me/TMS) were unequivocally confirmed by the mass spectral data, 1H-NMR, 2D 1H-1H-COSY, TOCSY, HMBC, and HSQC spectra, as well as enantiomeric HPLC analyses. Thus, the vegetative CsLOX3, biosynthesizing 16(S)-HPOT, is the first 16(S)-LOX and ω3-LOX ever discovered. Eicosapentaenoic and hexadecatrienoic acids were also specifically transformed to the corresponding ω3(S)-hydroperoxides by CsLOX3.

Keywords