HortScience (Jan 2022)
High Tunnel Coverings Alter Crop Productivity and Microclimate of Tomato and Lettuce
Abstract
The implementation of high tunnels has shown to increase marketability and/or yield of tomato (Solanum lycopersicum) and lettuce (Lactuca sativa) crops compared with open-field systems. These structures provide the opportunity to alter light intensity and spectral quality by using specific polyethylene (poly) films and/or shadecloth, which may affect microclimate and subsequent crop productivity. However, little is known about how specific high tunnel coverings affect these parameters. The overall goal of this study was to evaluate the impact of various high tunnel coverings on the microclimate and crop productivity of tomato and lettuce. The coverings included standard, ultraviolet (UV)-stabilized poly film (standard); diffuse poly (diffuse); full-spectrum clear poly (clear); UV-A/B blocking poly (block); standard + 55% shadecloth (shade); and removal of standard poly 2 weeks before initial harvest to simulate a movable tunnel (movable). Microclimate parameters that were observed included canopy and soil temperatures, canopy growing degree-days (GDD), and photosynthetic active radiation (PAR), and crop productivity included yield and net photosynthetic rate. Hybrid red ‘BHN 589’ tomatoes were grown during the summer, and red ‘New Red Fire’ and green ‘Two Star’ leaf lettuce were grown in both spring and fall in 2017 and 2018. Increased temperature, GDD, and PAR were observed during the spring and summer compared with the fall. The soil temperatures during the summer increased more under the clear covering compared with the others. For tomato, the shade produced lower total fruit yield and net photosynthetic rate (Pn) compared with the other treatments, which were similar (P < 0.001 and <0.001, respectively). The greatest yield was 7.39 kg/plant, which was produced under the clear covering. For red leaf lettuce grown in the spring, the plants under the clear, standard, and diffuse coverings had significantly greater yield than the movable and shade coverings (P < 0.001). The coverings had less effect on the yield during the fall lettuce trials, which may have been attributed to the decrease in PAR and environmental temperatures. The findings of this study suggest that high tunnel coverings affect both microclimate and yield of lettuce and tomato.
Keywords