Energies (Nov 2020)

The Performance of a Spectral Wave Model at Predicting Wave Farm Impacts

  • J. Cameron McNatt,
  • Aaron Porter,
  • Christopher Chartrand,
  • Jesse Roberts

DOI
https://doi.org/10.3390/en13215728
Journal volume & issue
Vol. 13, no. 21
p. 5728

Abstract

Read online

For renewable ocean wave energy to support global energy demands, wave energy converters (WECs) will likely be deployed in large numbers (farms), which will necessarily change the nearshore environment. Wave farm induced changes can be both helpful (e.g., beneficial habitat and coastal protection) and potentially harmful (e.g., degraded habitat, recreational, and commercial use) to existing users of the coastal environment. It is essential to estimate this impact through modeling prior to the development of a farm, and to that end, many researchers have used spectral wave models, such as Simulating WAves Nearshore (SWAN), to assess wave farm impacts. However, the validity of the approaches used within SWAN have not been thoroughly verified or validated. Herein, a version of SWAN, called Sandia National Laboratories (SNL)-SWAN, which has a specialized WEC implementation, is verified by comparing its wave field outputs to those of linear wave interaction theory (LWIT), where LWIT is theoretically more appropriate for modeling wave-body interactions and wave field effects. The focus is on medium-sized arrays of 27 WECs, wave periods, and directional spreading representative of likely conditions, as well as the impact on the nearshore. A quantitative metric, the Mean Squared Skill Score, is used. Results show that the performance of SNL-SWAN as compared to LWIT is “Good” to “Excellent”.

Keywords