Scientific Reports (Apr 2021)

Variability in stem taper surface topography affects the degree of corrosion and fretting in total hip arthroplasty

  • Kilian Elia Stockhausen,
  • Christoph Riedel,
  • Alex Victoria Belinski,
  • Dorothea Rothe,
  • Thorsten Gehrke,
  • Felix Klebig,
  • Matthias Gebauer,
  • Michael Amling,
  • Mustafa Citak,
  • Björn Busse

DOI
https://doi.org/10.1038/s41598-021-88234-3
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Degradation at the modular head-neck interface in total hip arthroplasty (THA) is predominately expressed in the form of corrosion and fretting, potentially causing peri-prosthetic failure by adverse reactions to metal debris. This retrieval study aimed to quantify variations in stem taper surface topographies and to assess the influence on the formation of corrosion and/or fretting in titanium alloy stem tapers combined with metal and ceramic heads. Four hip stem designs (Alloclassic, CLS, Bicontact and SL-Plus) were characterized using high-resolution 3D microscopy, and corrosion and fretting were rated using the Goldberg scoring scheme. Quantification of the taper surface topographies revealed a high variability in surface characteristics between threaded stem tapers: Alloclassic and CLS tapers feature deeply threaded trapezoid-shaped profiles with thread heights over 65 µm. The sawtooth-shaped Bicontact and triangular SL-Plus taper are characterized by low thread heights below 14 µm. Significantly lower corrosion and fretting scores were observed in lightly threaded compared to deeply threaded tapers in ceramic head combinations. No significant differences in corrosion or fretting scores with thread height were found in pairings with metal heads. Understanding the relationship between stem taper surface topography and the formation of corrosion and fretting could help to improve the performance of modern THAs and lead to longer-lasting clinical results.