Molecular Genetics and Metabolism Reports (Dec 2015)

Residual glycosaminoglycan accumulation in mitral and aortic valves of a patient with attenuated MPS I (Scheie syndrome) after 6 years of enzyme replacement therapy: Implications for early diagnosis and therapy

  • Yohei Sato,
  • Masako Fujiwara,
  • Hiroshi Kobayashi,
  • Michio Yoshitake,
  • Kazuhiro Hashimoto,
  • Yuji Oto,
  • Hiroyuki Ida

DOI
https://doi.org/10.1016/j.ymgmr.2015.10.014
Journal volume & issue
Vol. 5, no. C
pp. 94 – 97

Abstract

Read online

Mucopolysaccharidosis (MPS) is an inherited metabolic disease caused by deficiency of the enzymes needed for glycosaminoglycan (GAG) degradation. MPS type I is caused by the deficiency of the lysosomal enzyme alpha-l-iduronidase and is classified into Hurler syndrome, Scheie syndrome, and Hurler–Scheie syndrome based on disease severity and onset. Cardiac complications such as left ventricular hypertrophy, cardiac valve disease, and coronary artery disease are often observed in MPS type I. Enzyme replacement therapy (ERT) has been available for MPS type I, but the efficacy of this treatment for cardiac valve disease is unknown. We report on a 56-year-old female patient with attenuated MPS I (Scheie syndrome) who developed aortic and mitral stenosis and coronary artery narrowing. The cardiac valve disease progressed despite ERT and she finally underwent double valve replacement and coronary artery bypass grafting. The pathology of the cardiac valves revealed GAG accumulation and lysosomal enlargement in both the mitral and aortic valves. Zebra body formation was also confirmed using electron microscopy. Our results suggest that ERT had limited efficacy in previously established cardiac valve disease. Early diagnosis and initiation of ERT is crucial to avoid further cardiac complications in MPS type I.

Keywords