Frontiers in Ecology and Evolution (May 2020)

Locomotory Adaptations in 3D Humerus Geometry of Xenarthra: Testing for Convergence

  • Carmela Serio,
  • Pasquale Raia,
  • Carlo Meloro

DOI
https://doi.org/10.3389/fevo.2020.00139
Journal volume & issue
Vol. 8

Abstract

Read online

Three-dimensional (3D) models of fossil bones are increasingly available, thus opening a novel frontier in the study of organismal size and shape evolution. We provide an example of how photogrammetry can be combined with Geometric Morphometrics (GMM) techniques to study patterns of morphological convergence in the mammalian group of Xenarthra. Xenarthrans are currently represented by armadillos, sloths, and anteaters. However, this clade shows an incredibly diverse array of species and ecomorphotypes in the fossil record, including gigantic ground sloths and glyptodonts. Since the humerus is a weight-bearing bone in quadrupedal mammals and its morphology correlates with locomotor behavior, it provides an ideal bone to gain insight into adaptations of fossil species. A 3D sample of humerii belonging to extant and fossil Xenarthra allowed us to identify a significant phylogenetic signal and a strong allometric component in the humerus shape. Although no rate shift in the evolution of the humerus shape was recorded for any clade, fossorial and arboreal species humerii did evolve at significantly slower and faster paces, respectively, than the rest of the Xenarthran species. Significant evidence for morphological convergence found among the fossorial species and between the two tree sloth genera explains these patterns. These results suggest that the highly specialized morphologies of digging taxa and tree sloths represent major deviations from the plesiomorphic Xenarthran body plan, evolved several times during the history of the group.

Keywords