PLoS ONE (Jan 2022)

Hyporheic hydraulic geometry: Conceptualizing relationships among hyporheic exchange, storage, and water age.

  • Geoffrey C Poole,
  • S Kathleen Fogg,
  • Scott J O'Daniel,
  • Byron E Amerson,
  • Ann Marie Reinhold,
  • Samuel P Carlson,
  • Elizabeth J Mohr,
  • Hayley C Oakland

DOI
https://doi.org/10.1371/journal.pone.0262080
Journal volume & issue
Vol. 17, no. 1
p. e0262080

Abstract

Read online

Hyporheic exchange is now widely acknowledged as a key driver of ecosystem processes in many streams. Yet stream ecologists have been slow to adopt nuanced hydrologic frameworks developed and applied by engineers and hydrologists to describe the relationship between water storage, water age, and water balance in finite hydrosystems such as hyporheic zones. Here, in the context of hyporheic hydrology, we summarize a well-established mathematical framework useful for describing hyporheic hydrology, while also applying the framework heuristically to visualize the relationships between water age, rates of hyporheic exchange, and water volume within hyporheic zones. Building on this heuristic application, we discuss how improved accuracy in the conceptualization of hyporheic exchange can yield a deeper understanding of the role of the hyporheic zone in stream ecosystems. Although the equations presented here have been well-described for decades, our aim is to make the mathematical basis as accessible as possible and to encourage broader understanding among aquatic ecologists of the implications of tailed age distributions commonly observed in water discharged from and stored within hyporheic zones. Our quantitative description of "hyporheic hydraulic geometry," associated visualizations, and discussion offer a nuanced and realistic understanding of hyporheic hydrology to aid in considering hyporheic exchange in the context of river and stream ecosystem science and management.