Heliyon (Sep 2024)
Huaier relieves oxaliplatin-induced hepatotoxicity through activation of the PI3K/AKT/Nrf2 signaling pathway in C57BL/6 mice
Abstract
Hepatotoxicity caused by the anticancer medication oxaliplatin (OXA) significantly restricts its clinical use and raises the risk of liver damage. Huaier, a fungus found in China, has been demonstrated to have various beneficial effects in adjuvant therapy for cancer. However, the preventive impact of Huaier against OXA-induced hepatotoxicity is still unknown. The potential molecular pathways behind the hepatoprotective activity of Huaier against OXA-induced hepatotoxicity were investigated in the current study Mice were intraperitoneally injected with 10 mg/kg of OXA once a week for six consecutive weeks to establish a liver injury model. Huaier (2 g/kg, 4 g/kg, and 8 g/kg) was administered weekly to mice by gavage for six weeks. Commercial kits were used to determine the contents of glutathione, catalase, superoxide dismutase, and malondialdehyde. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to assess the impact of Huaier therapy on the expression of the PI3K pathway. Huaier exhibited a good protective effect on OXA-induced hepatotoxicity in a dose-dependent manner, which was connected to the suppression of oxidative stress, according to the results of biochemical index detection and histological staining analysis. In addition, Huaier could counteract the OXA-induced suppression of the PI3K/AKT signaling pathway. Moreover, the hepatoprotective effect and PI3K activation of Huaier were eradicated by LY294002. These findings imply that by decreasing oxidative stress, Huaier can minimize OXA-induced liver injury, establishing the groundwork for Huaier to lessen chemotherapy-induced hepatotoxicity in clinical practice.