Journal of High Energy Physics (Jul 2018)

Quantum dissipation of a heavy quark from a nonlinear stochastic Schrödinger equation

  • Yukinao Akamatsu,
  • Masayuki Asakawa,
  • Shiori Kajimoto,
  • Alexander Rothkopf

DOI
https://doi.org/10.1007/JHEP07(2018)029
Journal volume & issue
Vol. 2018, no. 7
pp. 1 – 19

Abstract

Read online

Abstract We study the open system dynamics of a heavy quark in the quark-gluon plasma using a Lindblad master equation. Applying the quantum state diffusion approach by Gisin and Percival, we derive and numerically solve a nonlinear stochastic Schrödinger equation for wave functions, which is equivalent to the Lindblad master equation for the density matrix. From our numerical analysis in one spatial dimension, it is shown that the density matrix relaxes to the Boltzmann distribution in various setups (with and without external potentials), independently of the initial conditions. We also confirm that quantum dissipation plays an essential role not only in the long-time behavior of the heavy quark but also at early times if the heavy quark initial state is localized and quantum decoherence is ineffective.

Keywords