Mathematics (Apr 2019)

A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots

  • Ramandeep Behl,
  • Eulalia Martínez,
  • Fabricio Cevallos,
  • Diego Alarcón

DOI
https://doi.org/10.3390/math7040339
Journal volume & issue
Vol. 7, no. 4
p. 339

Abstract

Read online

The aim of this paper is to introduce new high order iterative methods for multiple roots of the nonlinear scalar equation; this is a demanding task in the area of computational mathematics and numerical analysis. Specifically, we present a new Chebyshev–Halley-type iteration function having at least sixth-order convergence and eighth-order convergence for a particular value in the case of multiple roots. With regard to computational cost, each member of our scheme needs four functional evaluations each step. Therefore, the maximum efficiency index of our scheme is 1.6818 for α = 2 , which corresponds to an optimal method in the sense of Kung and Traub’s conjecture. We obtain the theoretical convergence order by using Taylor developments. Finally, we consider some real-life situations for establishing some numerical experiments to corroborate the theoretical results.

Keywords