AIP Advances (Apr 2017)
Adaptive differential correspondence imaging based on sorting technique
Abstract
We develop an adaptive differential correspondence imaging (CI) method using a sorting technique. Different from the conventional CI schemes, the bucket detector signals (BDS) are first processed by a differential technique, and then sorted in a descending (or ascending) order. Subsequently, according to the front and last several frames of the sorted BDS, the positive and negative subsets (PNS) are created by selecting the relative frames from the reference detector signals. Finally, the object image is recovered from the PNS. Besides, an adaptive method based on two-step iteration is designed to select the optimum number of frames. To verify the proposed method, a single-detector computational ghost imaging (GI) setup is constructed. We experimentally and numerically compare the performance of the proposed method with different GI algorithms. The results show that our method can improve the reconstruction quality and reduce the computation cost by using fewer measurement data.