Energies (Sep 2022)

Life Test Optimization for Gas Turbine Engine Based on Life Cycle Information Support and Modeling

  • Sagit Valeev,
  • Natalya Kondratyeva

DOI
https://doi.org/10.3390/en15196874
Journal volume & issue
Vol. 15, no. 19
p. 6874

Abstract

Read online

The task of choosing the modes and duration of life tests of complex technical objects, such as aircraft engines, is a complex and difficult-to-formalize task. Experimental optimization of the parameters of life tests of complex technical objects is costly in terms of material and time resources, which makes such an approach to the choice of test parameters practically difficult. The problem of life test optimization for gas turbine engines on the basis of the engine life cycle information support and statistical modeling is discussed. Within the framework of the research, the features of the optimization of life tests based on simulation modeling of the life cycle of gas turbine engines were studied. The criterion of the efficiency of the life tests was introduced, and this characterized the predicted effect (technical and economic) of the operation of a batch of engines, the reliability of which was confirmed by life tests; a method of complex optimization of resource tests in the life cycle system was developed. An objective function was formed for the complex optimization of life tests based on life cycle simulation. The principles of formation and refinement of the simulation model of the life cycle for the optimization of life tests were determined. A simulation model of the main stages of the life cycle of an auxiliary gas turbine engine was developed. A study was performed on the influence of the quality of the production of “critical” engine elements, the system of engine acceptance and shipment, as well as the effect of a range of parameters of the engine loading mode on the efficiency of the life tests of an auxiliary gas turbine engine. The optimal parameters of periodic life tests of an auxiliary gas turbine engine were determined by simulation modeling in the life cycle system, which made it possible to increase the equivalence of tests by several times and reduce their duration in comparison with the program of serial tests.

Keywords