Complex System Modeling and Simulation (Dec 2022)
Model Construction and Numerical Simulation for Hydroplaning of Complex Tread Tires
Abstract
Euler-Lagrange coupling method is used to establish the fluid-structure interaction model for tires with different tread patterns by obtaining the grounding mark and normal contact force between tire and the road surface during tire rolling. The altering of load force, tire pressure, and water film thickness in relation to the effect on tire-road force during both constant speed and critical hydroplaning speed was analyzed. Results show that the critical hydroplaning speed and normal contact force between tire and the road surface are positively correlated with vehicle load and tire pressure and negatively correlated with water film thickness. Python language is used to develop the pre-processing plug-ins to achieve parametric modeling and rapid creation of Finite Element Analysis (FEA) model to reduce time costs, and the effectiveness of the plug-ins is verified through comparative tests.
Keywords