Metals (Feb 2024)
Effect of Coiling Temperature on Microstructures and Precipitates in High-Strength Low-Alloy Pipeline Steel after Heavy Reduction during a Six-Pass Rolling Thermo-Mechanical Controlled Process
Abstract
Nb-Ti high-strength low-alloy pipeline steel was subjected to a six-pass rolling process followed by the coiling process at different temperatures between 600 and 650 °C using the thermo-mechanical testing system Gleeble 3500 (Gleeble, New York, NY, USA). This experimental steel was subjected to 72% heavy reduction through a thermos-mechanical controlled process. Thereafter, the microstructures were observed using optical microscopy, scanning electron microscopy, electron backscatter scanning diffraction, and transmission electron microscopy coupled with energy dispersive spectrometry and selected area electron diffraction. For the selected three coiling temperatures of 600, 625, and 650 °C, acicular ferrite, polygonal ferrite, and pearlite were observed, and morphology and statistical analysis were adopted for the study of precipitates. Based on the estimation by the Ashby–Orowan formula, the incremental strength through precipitation strengthening decreases with coiling temperatures and reaches 26.67 Mpa at a coiling temperature of 600 °C. Precipitation-time-temperature curves were obtained to explain the transformation of precipitates. The (Nb, Ti)(C, N) particles tended to precipitate in the acicular ferrite with [011](Nb, Ti)(C, N)//[011]α-Fe orientation. The lower coiling temperature provided enough driving force for the nucleation of precipitates while inhibiting their growth.
Keywords