Catalysts (Dec 2022)

Mineralization of Lipase from <i>Thermomyces lanuginosus</i> Immobilized on Methacrylate Beads Bearing Octadecyl Groups to Improve Enzyme Features

  • José R. Guimarães,
  • Diego Carballares,
  • Javier Rocha-Martin,
  • Paulo W. Tardioli,
  • Roberto Fernandez-Lafuente

DOI
https://doi.org/10.3390/catal12121552
Journal volume & issue
Vol. 12, no. 12
p. 1552

Abstract

Read online

Lipase from Thermomyces lanuginosus (TLL) has been immobilized on Purolite Lifetech® ECR8806F (viz. methacrylate macroporous resin containing octadecyl groups, designated as Purolite C18-TLL), and the enzyme performance has been compared to that of the enzyme immobilized on octyl-agarose, designated as agarose C8-TLL. The hydrolytic activity versus p-nitrophenol butyrate decreased significantly, and to a lower extent versus S-methyl mandelate (more than twofold), while versus triacetin and R-methyl mandelate, the enzyme activity was higher for the biocatalyst prepared using Purolite C18 (up to almost five-fold). Regarding the enzyme stability, Purolite C18-TLL was significantly more stable than the agarose C8-TLL. Next, the biocatalysts were mineralized using zinc, copper or cobalt phosphates. Mineralization increased the hydrolytic activity of Purolite C18-TLL versus triacetin and R-methyl mandelate, while this activity decreased very significantly versus the S-isomer, while the effects using agarose C8-TLL were more diverse (hydrolytic activity increase or decrease was dependent on the metal and substrate). The zinc salt treatment increased the stability of both biocatalysts, but with a lower impact for Purolite C18-TLL than for agarose-C8-TLL. On the contrary, the copper and cobalt salt treatments decreased enzyme stability, but more intensively using Purolite C18-TLL. The results show that even using enzymes immobilized following the same strategy, the differences in the enzyme conformation cause mineralization to have diverse effects on enzyme stability, hydrolytic activity, and specificity.

Keywords