Neurobiology of Disease (Jun 2004)

Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease

  • Jae K Ryu,
  • Jean Kim,
  • Sung J Cho,
  • Kozo Hatori,
  • Astushi Nagai,
  • Hyun B Choi,
  • Min C Lee,
  • James G McLarnon,
  • Seung U Kim

Journal volume & issue
Vol. 16, no. 1
pp. 68 – 77

Abstract

Read online

We have investigated the effectiveness of transplantation of human neural stem cells into adult rat striatum prior to induction of striatal damage with the mitochondrial toxin 3-nitropropionic acid (3-NP). Systemic 3-NP administration caused widespread neuropathological deficits similar to ones found in Huntington disease (HD) including impairment in motor function (rotarod balance test) and extensive degeneration of neuron-specific nuclear antigen (NeuN)(+) neurons, calbindin(+) neurons and glutamic acid decarboxylase (GAD)(+) striatal neurons. Animals receiving intrastriatal implantation of human neural stem cells (hNSCs) 1 week before 3-NP treatments exhibited significantly improved motor performance and reduced damage to striatal neurons compared with control sham injections. In contrast, transplantation of hNSCs at 12 h after the initial 3-NP administration did not lead to any improvement in motor performance or protect striatal neurons from the 3-NP-induced toxicity. These results indicate that the presence of grafted hNSCs before 3-NP treatment is required for host striatal neuronal protection and enhanced motor function. Immunoreactivity of brain-derived neurotrophic factor (BDNF) was found in vitro in cultured hNSCs and in vivo in grafted NSCs with expression and secretion of BDNF demonstrated by RT-PCR, immunocytochemistry, dot-blot, and ELISA analyses. Thus, protective effects of proactive transplantation of hNSCs may be due, in part, to effects mediated by BDNF. The findings in this work have particular relevance to a rat model of HD in that proactive transplanted hNSCs protect host striatal neurons against neuronal injury and improve motor impairment induced by 3-NP toxicity.

Keywords