Buildings (Jan 2023)

Phenomenological 2D and 3D Models of Ductile Fracture for Girth Weld of X80 Pipeline

  • Naixian Li,
  • Bin Jia,
  • Junhong Chen,
  • Ying Sheng,
  • Songwen Deng

DOI
https://doi.org/10.3390/buildings13020283
Journal volume & issue
Vol. 13, no. 2
p. 283

Abstract

Read online

Welding is the main method for oil/gas steel pipeline connection, and a large number of girth welds are a weak part of the pipeline. Under extremely complex loads, a steel pipeline undergoes significant plastic deformations and eventually leads to pipeline fracture. A damage mechanics model is a promising approach, capable of describing material fracture problems according to the stress states of the materials. In this study, an uncoupled fracture 2D model with a function of fracture strain and stress triaxiality, two uncoupled 3D fracture models, a consider the effect of Lode parameter stress-modified critical strain (LSMCS) model, and an extended Rice–Tracey (ERT) criterion were applied to X80 pipeline girth welds. Comprehensive experimental research was conducted on different notched specimens, covering a wide range of stress states, and the corresponding finite element models were established. A phenomenon-based hybrid numerical–experimental calibration method was also applied to determine the fracture parameter for these three models, and the stress triaxiality of the influence law of the tensile strength was analyzed. The results showed that the proposed fracture criterion could better characterize the ductile fracture behaviors of the girth welds of the X80 pipeline; however, the prediction accuracy of the 3D fracture model was higher than that of the 2D fracture model. The functional relationship between the tensile strength and stress triaxiality of the X80 pipeline girth welds satisfied the distribution form of the quadratic function and increased monotonically. The research results can be used to predict the fracture of X80 pipeline girth welds under various complex loads.

Keywords