Journal of Patient-Reported Outcomes (Jul 2024)

Comparison of the EQ-5D-5L and the patient-reported outcomes measurement information system preference score (PROPr) in the United States

  • Ron D. Hays,
  • Maria Orlando Edelen,
  • Anthony Rodriguez,
  • Nabeel Qureshi,
  • David Feeny,
  • Patricia M. Herman

DOI
https://doi.org/10.1186/s41687-024-00749-1
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background In contrast to prior research, our study presents longitudinal comparisons of the EQ-5D-5L and Patient-Reported Outcomes Measurement Information System (PROMIS) preference (PROPr) scores. This fills a gap in the literature, providing a much-needed understanding of these preference-based measures and their applications in healthcare research. Furthermore, our study provides equations to estimate one measure from the other, a tool that can significantly facilitate comparisons across studies. Methods We administered a health survey to 4,098 KnowledgePanel® members living in the United States. A subset of 1,256 (82% response rate) with back pain also completed the six-month follow-up survey. We then conducted thorough cross-sectional and longitudinal analyses of the two measures, including product-moment correlations between scores, associations with demographic variables, and health conditions. To estimate one measure from the other, we used ordinary least squares (OLS) regression with the baseline data from the general population. Results The correlation between the EQ-5D-5L and PROPr scores was 0.69, but the intraclass correlation was only 0.34 because the PROPr had lower (less positive) mean scores on the 0 (dead) to 1 (perfect health) continuum than the EQ-5D-5L. The associations between the two preference measures and demographic variables were similar at baseline. The product-moment correlation between unstandardized beta coefficients for each preference measure regressed on 22 health conditions was 0.86, reflecting similar patterns of unique associations. Correlations of change from baseline to 6 months in the two measures with retrospective perceptions of change were similar. Adjusted variance explained in OLS regressions predicting one measure from the other was 48%. On average, the predicted values were within a half-standard deviation of the observed EQ-5D-5L and PROPr scores. The beta-binomial regression model slightly improved over the OLS model in predicting the EQ-5D-5L from the PROPr but was equivalent to the OLS model in predicting the PROPr. Conclusion Despite substantial mean differences, the EQ-5D-5L and PROPr have similar cross-sectional and longitudinal associations with other variables. We provide the OLS regression equations for use in cost-effectiveness research and meta-analyses. Future studies are needed to compare these measures with different conditions and interventions to provide more information on their relative validity.

Keywords