Micromachines (Nov 2023)

MEMS Fluxgate Sensor Based on Liquid Casting

  • Ying Yang,
  • Wei Xu,
  • Guangyuan Chen,
  • Zhenhu Jin,
  • Dandan Wang,
  • Zhihong Mai,
  • Guozhong Xing,
  • Jiamin Chen

DOI
https://doi.org/10.3390/mi14122159
Journal volume & issue
Vol. 14, no. 12
p. 2159

Abstract

Read online

Compared with electroplating, liquid casting enables the rapid formation of a three-dimensional solenoid coil with a narrower line width and greater thickness, which proves advantageous in enhancing the comprehensive performance of the micro-electromechanical system (MEMS) fluxgate sensor. For this reason, a MEMS fluxgate sensor based on liquid casting with a closed-loop Fe-based amorphous alloy core is proposed. Based on the process parameters of liquid casting, the structure of the MEMS fluxgate sensor was designed. Utilizing MagNet to build the simulation model, the optimal excitation conditions and sensitivity were obtained. According to the simulation model, a highly sensitive MEMS fluxgate sensor based on liquid casting was fabricated. The resulting sensor exhibits a sensitivity of 2847 V/T, a noise of 306 pT/√Hz@1 Hz, a bandwidth of DC-10.5 kHz, and a power consumption of 43.9 mW, which shows high sensitivity and low power consumption compared with other MEMS fluxgates in similar size.

Keywords