Applied Sciences (Mar 2019)

Adaptive Context-Aware and Structural Correlation Filter for Visual Tracking

  • Bin Zhou,
  • Tuo Wang

DOI
https://doi.org/10.3390/app9071338
Journal volume & issue
Vol. 9, no. 7
p. 1338

Abstract

Read online

Accurate visual tracking is a challenging issue in computer vision. Correlation filter (CF) based methods are sought in visual tracking based on their efficiency and high performance. Nonetheless, traditional CF-based trackers have insufficient context information, and easily drift in scenes of fast motion or background clutter. Moreover, CF-based trackers are sensitive to partial occlusion, which may reduce their overall performance and even lead to failure in tracking challenge. In this paper, we presented an adaptive context-aware (CA) and structural correlation filter for tracking. Firstly, we propose a novel context selecting strategy to obtain negative samples. Secondly, to gain robustness against partial occlusion, we construct a structural correlation filter by learning both the holistic and local models. Finally, we introduce an adaptive updating scheme by using a fluctuation parameter. Extensive comprehensive experiments on object tracking benchmark (OTB)-100 datasets demonstrate that our proposed tracker performs favorably against several state-of-the-art trackers.

Keywords