Water Research X (Dec 2024)

Aquacultural source of nitrous oxide revealed by nitrogen isotopes

  • Yang Wang,
  • Guangbo Li,
  • Qixing Ji

Journal volume & issue
Vol. 25
p. 100249

Abstract

Read online

The rapid expansion of coastal aquaculture has led to an increase in the coverage of aquaculture ponds, where intense feed-derived nitrogen is causing significant emissions of nitrous oxide (N2O). Multiple N2O production pathways and the relative importance of water column vs. sedimentary production in aquaculture ponds remain uncertain. Clarifying these pathways is vital for sustainable aquaculture development. Using 15N-labeled dissolved inorganic nitrogen, the pathways and rates of N2O production in subtropical aquaculture ponds located in south China, cultivating whiteleg shrimp, Japanese seabass, and giant river prawn, were successfully characterized. Total N2O production rates ranged from 6 to 70 µmol-N m−2 d−1, with the shrimp pond exhibiting the highest total N2O production rates, followed by ponds for seabass and prawn. These differences are primarily due to varying feed amounts causing differences in dissolved nutrients in water column and sediment. Particularly, nutrient and organic matter accumulation at the surface sediment stimulated N2O production. The oxygenated sediment on a centimeter scale could produce substantially more N2O compared to the water column above on a meter scale. Partial denitrification, i.e., nitrate and nitrite reduction to N2O, was more important (> 60 %) for N2O production in aquaculture ponds. The availability of nitrite is likely a major factor driving partial denitrification for both sedimentary and water column N2O production.

Keywords