Open Geosciences (Nov 2020)
The relationship between heat flow and seismicity in global tectonically active zones
Abstract
This study aims to analyze the complex relationship between heat flow and seismicity in tectonically active zones worldwide. The problem was quantitatively analyzed by using a geographic detector method, which is well suited for analyzing nonlinear relationships in geography. Moreover, β-value that describes the frequency-magnitude distribution is used to represent the seismicity. The results showed that heat flow (HF) = 84 mW/m2 is a critical point for the relevant mechanisms of heat flow with seismicity in these zones. When HF 84 mW/m2, the heat flow correlates positively with the β-value, with a correlation degree of 0.463. Within this interval, the increased heat flow decreases the viscosity of the rock plate and then reduces the stress. Lower stress would correspond to a smaller earthquake and then a higher β-value. Therefore, high heat flow values correspond to high β-values. This research would be conducive to understand the geologic activity and be helpful to determine the accuracy and timeliness of seismic hazard assessment.
Keywords