Nanomaterials (Nov 2020)

Effect of Remineralized Collagen on Dentin Bond Strength through Calcium Phosphate Ion Clusters or Metastable Calcium Phosphate Solution

  • Hyeryeong Kim,
  • Aerin Choi,
  • Mi-Kyung Gong,
  • Hae Ryoun Park,
  • Yong-Il Kim

DOI
https://doi.org/10.3390/nano10112203
Journal volume & issue
Vol. 10, no. 11
p. 2203

Abstract

Read online

This study aimed to investigate whether dentin remineralization and micro-tensile bond strength increase when using calcium phosphate ion clusters (CPICs) or metastable Ca-P. After being etched, each dentin specimen was designated into four groups and treated with the appropriate solution for 1 min: 100% ethanol, 2 and 1 mg/mL of CPICs, and metastable Ca-P. The specimens were then prepared for scanning electron microscopy (SEM), transmission electron microscropy (TEM) imaging, a matrix metalloproteinases inhibition assay, and the micro-tensile bond strength test. To compare among the groups, one-way analysis of variance was performed. In the SEM imaging, with a rising concentration of CPICs, the degree of remineralization of dentin increased significantly. The metastable Ca-P treated specimens showed a similar level of remineralization as the 1 mg/mL CPICs treated specimens. The TEM imaging also revealed that dentin remineralization occurs in a CPICs concentration-dependent manner between the demineralized dentin and the resin layer. Furthermore, the results of micro-tensile bond strength showed the same trend as the results confirmed by SEM and TEM. We demonstrated that a 1 min pretreatment of CPICs or metastable Ca-P in etched dentin collagen fibril can achieve biomimetic remineralization and increase micro-tensile bond strength.

Keywords