Bioactive Materials (Jun 2021)
Fundamentals and applications of enzyme powered micro/nano-motors
Abstract
Micro/nanomotors (MNMs) are miniaturized machines that can convert many kinds of energy into mechanical motion. Over the past decades, a variety of driving mechanisms have been developed, which have greatly extended the application scenarios of MNMs. Enzymes exist in natural organisms which can convert chemical energy into mechanical force. It is an innovative attempt to utilize enzymes as biocatalyst providing driving force for MNMs. The fuels for enzymatic reactions are biofriendly as compared to traditional counterparts, which makes enzyme-powered micro/nanomotors (EMNMs) of great value in biomedical field for their nature of biocompatibility. Until now, EMNMs with various shapes can be propelled by catalase, urease and many others. Also, they can be endowed with multiple functionalities to accomplish on-demand tasks. Herein, combined with the development process of EMNMs, we are committed to present a comprehensive understanding of EMNMs, including their types, propelling principles, and potential applications. In this review, we will introduce single enzyme that can be used as motor, enzyme powered molecule motors and other micro/nano-architectures. The fundamental mechanism of energy conversion process of EMNMs and crucial factors that affect their movement behavior will be discussed. The current progress of proof-of-concept applications of EMNMs will also be elaborated in detail. At last, we will summarize and prospect the opportunities and challenges that EMNMs will face in their future development.