BMC Neurology (Sep 2022)

Hyperperfusion in the cerebellum lobule VIIb in patients with epileptic seizures

  • Kazuaki Sato,
  • Kazuki Nakahara,
  • Kaoru Obata,
  • Ryota Matsunari,
  • Rie Suzuki-Tsuburaya,
  • Hiromitsu Tabata,
  • Masako Kinoshita

DOI
https://doi.org/10.1186/s12883-022-02882-0
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Background The cerebellum plays an important role in motor control, however, its involvement in epilepsy has not been fully understood. Arterial spin labelling perfusion magnetic resonance image (ASL) is a noninvasive method to evaluate cerebral and cerebellar blood flow. We investigated cerebellar perfusion in patients with epileptic seizures using ASL. Methods Adult patients with epileptic seizures who underwent ASL in three post labeling delay (PLD) conditions (1525, 1800, and 2500 msec) and conventional electroencephalography (EEG) on the same day were investigated. Clinical and EEG characteristics of them were retrospectively analyzed. Results Six patients (6 women, age; 36.2 ± 17.9 years (mean ± SD)) showed hyperperfusion in selective areas in the cerebellar paravermis of lobule VIIb. One patient with generalized epilepsy (tentative diagnosis of juvenile myoclonic epilepsy or epilepsy with myoclonic absences) showed unilateral hypoperfusion in PLD 1525 msec and hyperperfusion in PLD 1800 and 2500 msec at the area while EEG showed generalized spike-wave complexes. After successful treatment, these perfusion abnormalities disappeared. In two patients with focal epilepsy manifesting with asymmetrical motor symptoms, cerebellar hyperperfusion was found on the opposite side to the seizure focus estimated by seizure semiology. Besides hyperperfusion of the VIIb lobule, hypoperfusion at the same area was detected in shorter PLD condition in four patients and in longer PLD condition in one patient. Conclusion The cerebellar paravermis of lobule VIIb can be a component of motor circuit and participate in epileptic network in humans. Cerebellar perfusion abnormalities can be associated with neurovascular coupling via capillary bed.

Keywords