Indian Journal of Ophthalmology (Jan 2018)

WINROP algorithm for prediction of sight threatening retinopathy of prematurity: Initial experience in Indian preterm infants

  • Gaurav Sanghi,
  • Anil Narang,
  • Sunny Narula,
  • Mangat R Dogra

DOI
https://doi.org/10.4103/ijo.IJO_486_17
Journal volume & issue
Vol. 66, no. 1
pp. 110 – 113

Abstract

Read online

Purpose: To determine the efficacy of the online monitoring tool, WINROP (https://winrop.com/) in detecting sight-threatening type 1 retinopathy of prematurity (ROP) in Indian preterm infants. Methods: Birth weight, gestational age, and weekly weight measurements of seventy preterm infants (<32 weeks gestation) born between June 2014 and August 2016 were entered into WINROP algorithm. Based on weekly weight gain, WINROP algorithm signaled an alarm to indicate that the infant is at risk for sight-threatening Type 1 ROP. ROP screening was done according to standard guidelines. The negative and positive predictive values were calculated using the sensitivity, specificity, and prevalence of ROP type 1 for the study group. 95% confidence interval (CI) was calculated. Results: Of the seventy infants enrolled in the study, 31 (44.28%) developed Type 1 ROP. WINROP alarm was signaled in 74.28% (52/70) of all infants and 90.32% (28/31) of infants treated for Type 1 ROP. The specificity was 38.46% (15/39). The positive predictive value was 53.84% (95% CI: 39.59–67.53) and negative predictive value was 83.3% (95% CI: 57.73–95.59). Conclusion: This is the first study from India using a weight gain-based algorithm for prediction of ROP. Overall sensitivity of WINROP algorithm in detecting Type 1 ROP was 90.32%. The overall specificity was 38.46%. Population-specific tweaking of algorithm may improve the result and practical utility for ophthalmologists and neonatologists.

Keywords