IEEE Access (Jan 2022)

IMD-Net: A Deep Learning-Based Icosahedral Mesh Denoising Network

  • Jan Botsch,
  • Hardik Jain,
  • Olaf Hellwich

DOI
https://doi.org/10.1109/ACCESS.2022.3164714
Journal volume & issue
Vol. 10
pp. 38635 – 38649

Abstract

Read online

In this work, we propose a novel denoising technique, the icosahedral mesh denoising network (IMD-Net) for closed genus-0 meshes. IMD-Net is a deep neural network that produces a denoised mesh in a single end-to-end pass, preserving and emphasizing natural object features in the process. A preprocessing step, exploiting the homeomorphism between genus-0 mesh and sphere, remeshes an irregular mesh using the regular mesh structure of a frequency subdivided icosahedron. Enabled by gauge equivariant convolutional layers arranged in a residual U-net, IMD-Net denoises the remeshing invariant to global mesh transformations as well as local feature constellations and orientations, doing so with a computational complexity of traditional conv2D kernel. The network is equipped with carefully crafted loss function that leverages differences between positional, normal and curvature fields of target and noisy mesh in a numerically stable fashion. In a first, two large shape datasets commonly used in related fields, ABC and ShapeNetCore, are introduced to evaluate mesh denoising. IMD-Net’s competitiveness with existing state-of-the-art techniques is established using both metric evaluations and visual inspection of denoised models. Our code is publicly available at https://github.com/jjabo/IMD-Net.

Keywords