Journal of Neuroinflammation (Dec 2012)

Platelet-derived growth factor (PDGF)-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation

  • Bethel-Brown Crystal,
  • Yao Honghong,
  • Hu Guoku,
  • Buch Shilpa

DOI
https://doi.org/10.1186/1742-2094-9-262
Journal volume & issue
Vol. 9, no. 1
p. 262

Abstract

Read online

Abstract Chemokine (C-C motif) ligand 2, also known as monocyte chemoattractant protein 1 (MCP-1) is an important factor for the pathogenesis of HIV-associated neurocognitive disorders (HAND). The mechanisms of MCP-1-mediated neuropathogenesis, in part, revolve around its neuroinflammatory role and the recruitment of monocytes into the central nervous system (CNS) via the disrupted blood-brain barrier (BBB). We have previously demonstrated that HIV-1/HIV-1 Tat upregulate platelet-derived growth factor (PDGF)-BB, a known cerebrovascular permeant; subsequently, the present study was aimed at exploring the regulation of MCP-1 by PDGF-BB in astrocytes with implications in HAND. Specifically, the data herein demonstrate that exposure of human astrocytes to HIV-1 LAI elevated PDGF-B and MCP-1 levels. Furthermore, treating astrocytes with the human recombinant PDGF-BB protein significantly increased the production and release of MCP-1 at both the RNA and protein levels. MCP-1 induction was regulated by activation of extracellular-signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinases and phosphatidylinositol 3-kinase (PI3K)/Akt pathways and the downstream transcription factor, nuclear factor κB (NFκB). Chromatin immunoprecipitation (ChIP) assays demonstrated increased binding of NFκB to the human MCP-1 promoter following PDGF-BB exposure. Conditioned media from PDGF-BB-treated astrocytes increased monocyte transmigration through human brain microvascular endothelial cells (HBMECs), an effect that was blocked by STI-571, a tyrosine kinase inhibitor (PDGF receptor (PDGF-R) blocker). PDGF-BB-mediated release of MCP-1 was critical for increased permeability in an in vitro BBB model as evidenced by blocking antibody assays. Since MCP-1 is linked to disease severity, understanding its modulation by PDGF-BB could aid in understanding the proinflammatory responses in HAND. These results suggest that astrocyte activation by PDGF-BB exaggerates monocyte recruitment into the brain via MCP-1 and underscores the critical role astrocytes play in HAND.