Archives of Civil Engineering (Jun 2024)

Automatic classification of underground utilities in Urban Areas: A novel method combining ground penetrating radar and image processing

  • Klaudia Pasternak,
  • Anna Fryskowska-Skibniewska

DOI
https://doi.org/10.24425/ace.2024.149851
Journal volume & issue
Vol. vol. 70, no. No 2
pp. 59 – 77

Abstract

Read online

Precise determination of the location of underground utility networks is crucial in the field of civil engineering for: the planning and management of space with densely urbanized areas, infrastructure modernization, during construction and building renovations. In this way, damage to underground utilities can be avoided, damage risks to neighbouring buildings can be minimized, and human and material losses can be prevented. It is important to determine not only the location but also the type of underground utility network. Information about location and network types improves the process of land use design and supports the sustainable development of urban areas, especially in the context of construction works in build-up areas and areas planned for development. The authors were inspired to conduct research on this subject by the development of a methodology for classifying network types based on images obtained in a non-invasive way using a Leica DS2000 ground penetrating radar. The authors have proposed a new classification algorithm based on the geometrical properties of hyperboles that represent underground utility networks. Another aim of the research was to automate the classification process, which may support the user in selecting the type of network in images that are sometimes highly noise-laden. The developed algorithm shortens the time required for image interpretation and the selection of underground objects, which is particularly important for inexperienced operators. The classification results revealed that the average effectiveness of the classification of network types ranged from 42% to 70%, depending on the type of infrastructure.

Keywords