BMC Microbiology (Nov 2023)

Comprehensive probiogenomics analysis of the commensal Escherichia coli CEC15 as a potential probiotic strain

  • Tales Fernando da Silva,
  • Rafael de Assis Glória,
  • Thiago Jesus de Sousa,
  • Monique Ferrary Americo,
  • Andria dos Santos Freitas,
  • Marcus Vinicius Canário Viana,
  • Luís Cláudio Lima de Jesus,
  • Ligia Carolina da Silva Prado,
  • Nathalie Daniel,
  • Olivia Ménard,
  • Marie-Françoise Cochet,
  • Didier Dupont,
  • Julien Jardin,
  • Amanda Dias Borges,
  • Simone Odília Antunes Fernandes,
  • Valbert Nascimento Cardoso,
  • Bertram Brenig,
  • Enio Ferreira,
  • Rodrigo Profeta,
  • Flavia Figueira Aburjaile,
  • Rodrigo Dias Oliveira de Carvalho,
  • Philippe Langella,
  • Yves Le Loir,
  • Claire Cherbuy,
  • Gwénaël Jan,
  • Vasco Azevedo,
  • Éric Guédon

DOI
https://doi.org/10.1186/s12866-023-03112-4
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 30

Abstract

Read online

Abstract Background Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. Results CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. Conclusions These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.

Keywords