Sensors (Dec 2018)

Theoretical and Experimental Analysis on the Influence of Rotor Non-Mechanical Errors of the Inductive Transducer in Active Magnetic Bearings

  • Jinpeng Yu,
  • Yan Zhou,
  • Ni Mo,
  • Zhe Sun,
  • Lei Zhao

DOI
https://doi.org/10.3390/s18124376
Journal volume & issue
Vol. 18, no. 12
p. 4376

Abstract

Read online

Inductive transducers are widely applied to active magnetic bearings (AMBs). However, when the rotor rotates at a high speed, the rotor defects will affect the measuring signal (the magnetic field generated by transducer coils) and then reduce the transducer measuring accuracy. The rotor in AMBs is assembled with laminations, which will result in rotor non-mechanical errors. In this paper, rotor non-mechanical errors, including the anisotropic internal permeability and anisotropic surface conductivity, and their influence on double-pole variable-gap inductive transducers are explored in depth. The anisotropic internal permeability will affect the transducer measuring accuracy and bring about 1.3 ± 0.1 % measurement error. The anisotropic surface conductivity leads to different eddy currents around the rotor, influences the equivalent reluctance of the magnetic circuit, and then affectsthe transducer measuring accuracy. The experiments prove that rotor non-mechanical errors have a significant influence on transducer measurement accuracy, and the reduction of the transducer excitation frequency can reduce the measurement error and improve the AMB control performance.

Keywords