PLoS ONE (Jan 2020)

Benefits of the multiplanar and volumetric analyses of pancreatic cancer using computed tomography.

  • Moon Hyung Choi,
  • Seung Bae Yoon,
  • Meiying Song,
  • In Seok Lee,
  • Tae Ho Hong,
  • Myung Ah Lee,
  • Eun Sun Jung

DOI
https://doi.org/10.1371/journal.pone.0240318
Journal volume & issue
Vol. 15, no. 10
p. e0240318

Abstract

Read online

Although pancreatic cancer tumors are irregularly shaped in terms of their three-dimensional (3D) structure, when T staging by imaging results, generally only the axial plane is used to measure the largest tumor diameter. We investigated the size of pancreatic cancer tumors using multi-plane and 3D reconstructed computed tomography (CT) images and investigated their clinical usefulness. Patients who underwent surgery for pancreatic adenocarcinoma were included. We measured the largest diameter of each pancreatic tumor in the axial, coronal, and sagittal planes of CT images. In addition, maximal diameter and cancer volume were measured from 3D images that were constructed using a semi-automated software system. Final data were compared with pathologic examination and the effect of each value on prognosis was analyzed. A total of 183 patients were analyzed. The maximal diameters measured on the axial, coronal, and sagittal planes were 2.9 ± 1.1, 3.2 ± 0.9, and 3.2 ± 1.0 cm, respectively, which were significantly smaller than pathologic results (3.4 ± 1.4 cm, all p<0.05 by paired t-test). The longest diameter among them (3.4 ± 1.1 cm) was nearly similar to the pathologic diameter. Cancer volume measured on 3D images demonstrated a higher area under the receptor operating characteristic curve [0.714, (95% confidence interval: 0.640-0.788)] for predicting early death compared to any unidimensional CT diameters measured. The longest pancreatic tumor diameter measured on multiplanar CT images was most accurate when compared to its corresponding pathologic diameter. Tumor volume had a stronger correlation with overall survival than tumor diameter.